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LElTER TO THE EDITOR 

Surface-to-bulk crossover in directed compact percolation 
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i Department of Physics, Clarkson University, Patsdam, N Y  13699-5820, USA 

Received 20 May 1991 

Abstract. For directed compact percolation in two dimensions, we conjecture the exacl 
analytical expressions far the percolation probability near a non-conducting wall. The 
initial ‘wet’ site is at a varying distance from the wall which is along the oriented ‘time’ 
direction. Our results allow an explicit evaluation of the surface-to-bulk crossover in the 
percolation probability. 

Surface properties of spin models near-phase transitions have attracted much theoretical 
attention [ l ,  21. For isotropic percolation models, surface effects have been studied 
less systematically; several results are available [3-91. In fact, studies of percolation 
near surfaces provide tools to describe processes of surface dissolution and corrosion 

Surface properties of directed percolation, however, were only investigated within 
the €-expansion down from d = 5  [ l l ] .  It would be of interest to obtain analytical 
results for simplified, low-dimensional versions of directed percolation. Indeed, in this 
note we conjecture the exact expressions for the percolation probability near a wall 
in the compact directed percolation introduced recently by Essam [12]. 

Directed compact percolation is defined on the square lattice (figure 1) with the 
axes rotated 45” with respect to the space and time directions. In figure 1 ,  a typical 
finite cluster spreading from the initial ( 1  = 0) site at L = 0 is shown by the full circles. 
The shaded circles indicate the wall the sites of which act as emply or non-conducting 
in the propagation of connectivity (‘wetness’). The coordinate L, defined in figure 1 ,  
then provides a convenient measure of the distance from the wall. The connectivity 
rules are defined [ 1 2 ]  to have no gaps at any 1-value (provided the cluster is grown 
from a compact seed at f =O). If two adjacent sites are both wet (both empty) at time 
f then at time ( f + 1 )  the site between the original two sites (see figure 1) will be wet 
(empty). In the other two cases (wet-empty or empty-wet) the offspring site is wet 
with probability p and empty otherwise (probability 1 - p ) .  Essam [12] calculated 
several properties of the above model. Specifically, he derived the percolation probabil- 
ity, P ( p ) ,  for the connectivity to persist to 1 =oO, starting from a single site at 1 = O ,  
with no walls, 

[ I O ] .  
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The 'bulk' ( L  = a) percolation transition is at p c  =;, and the model is obviously dual 
with respect to p e (1  -pj.  

One can also regard the above rule as defining a cellular automaton and consider 
initial configurations more general than a single continuous segment of wet sites. (This 
point of view also makes the aforementioned duality property better defined.) The 
kinetics of such automaton models is characterized by the dynamics of the domain 
walls separating wet and empty regions. In the most studied and interesting symmetric 
case ( p  =tj  the domain waii motion is diiiusionai, and pairs or' waiis anniniiaie in 
each encounter thus leading to cluster growth. There are no exact results for the cluster 
size distribution for this model; however, many numerical, exact, and asymptotic results 
were obtained [12-181 for various diffusive-domain-wall models in ID, for several 
interesting properties. Recently, extensions of the Essam model [I21 to d > 1 were 
considered [19]. 

vur  consloerailon will oe iimiiru LU mt: urrgurar iv IIIVUSI, w i u i  tiic a u u w  w ~ u p i t ~ a -  

tion of the wall at L =  -; in the notation of figure 1.  Note that only the sites at L>O 
are updated according to the rules specified above. The wall sites are always empty. 
The rules for updating at  L = 0 are defined as follows. Consider the sites at odd times 
and at L = ! .  These sites, if occupied, lead to a wet offspring at L=O with probability 
p (e.g. time step [ I  +2]  in figure I ) ,  whereas the probability of an empty offspring at 
r - n  /. -, ,- - .L^ .:-- -.-- r, . "1 :.. C"..-- 1, ,=*La i..i+î , -:*_ "t I --I i. nmn+lr L=" 15 ,,-&I, ,c.g. LllC U,,, c srcp L,-'J 111 , , p , c  L,. I ,  L1.C I..,,.'.. D l l C  a, " - 2  .I ...ay., 

then its offspring at L=O is always empty. 
Our discussion will be focused on the percolation probability P L ( p )  which is 

non-trivial for p p c .  The subscript L denotes percolation starting from a single initial 
site at L = 0, 1, 2, . . . , as defined in figure 1. Note that to the extent that the analogy 

-~~ ~ > ~ . . .~.:,, *~ ~ , 1 ~ ~ - 1 _ . >  .. &L. _ _  --A-, ..,:&L .L^ - > > " A  ,....-..., :-,. 
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with the spin-model surface criticality [l, 21 applies here, the percolation transition 
near a non-conducting wall must be of the ‘ordinary’ type; specifically, the percolation 
threshold should have the same value, p c ,  L = i ,  as for the bulk. 

From the simple form of Essam’s results [12], such as equation ( l ) ,  as well as from 
the experience with the statistics of directed compact lattice animals [20-221, we 
conjectured that P L ( p )  are rational functions of p .  We then developed a numerical 
procedure to obtain these rational expressions for L = 0,1, . . , and went on to identify 
the recursion relation that yielded the result for all integral L values. In the rest of 
this letter we only outline the numerical part which was mainly used to conjecture the 
form of the exact expressions. We then analyse the exact results for the crossover 
scaling behaviour as p - p :  and L+m. 

In order to outline the numerical approach used, let us define 

q - 1 - p  (2) 

Q - 1 - P .  (3) 

Note that Q is the probability that no infinite cluster is formed, i.e. that the cluster 
ends at a finite time f 3 0. This quantity is small for small q, and it is natural to consider 
the high-density expansion of Q( q )  in powers of q. There are many ways of calculating 
such series [23]. The method that we used is rather unconventional and tailored for 
the particular problem at hand. 

We employed the transfer matrix iterations on finite strips, up to times f = 99 and 
for widths u p  to 16 (in the original lattice distances, see below). The computation 
proceeded in the following steps. The possible compact clusters for a fixed time were 
all classified (numerically) and used to label the transfer matrix entries. A table of 
transition probabilities was then calculated. In order to avoid the difference between 
the even and odd times (see figure I), the second, spurious lattice was introduced, 
shifted half the lattice cell with respect to the original lattice. The list of the allowed 
cluster states was constructed in such a way as to have the correct clusters and 
connectivity provided the initial site was on the original lattice. In each time step the 
transfer matrix was applied on the current state vector (which was initially single-site), 
and the weight of the fully empty state in the resulting new state vector was calculated 
as a power series in q. In fact, all the quantities in the calculation were kept as 
polynomials in q. The details of the connectivity rule at the second wall should typically 
not matter for the final result. In our case, it was non-conducting. 

The part of the resulting series that was unchanged for varying t and lattice width 
near their maximal values was first examined by the Pad& approximant method to try 
to identify the rational function QL(q).  However, it was noticed right away that the 
products ( I  - q)2L’3QL(q) are in fact polynomials. We then continued our calculations 
directly for these products and obtained the first few polynomials explicitly. 

Before continuing the description of the results, let us comment further on the 
numerical method employed. Firstly, it is not easily extendible to other problems, 
notably the full directed percolation model, because the number of the transfer matrix 
states is exponentially large. For the compact-percolation model, the number of states 
only grows as O(Lz). With the advantage of the small number of states, the transfer 
matrix evaluation of the series is much faster than the more conventional cluster- 
enumeration methods. All our calculations took several CPU hours on the IBM RS/6000 
(model 520) workstation. The ‘exact’ expressions given below, in fact, only represent 
plausible conjectures based on the computer evaluation and thus are accurate to about 
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0 ( q z 2 ) .  The consistency of the resulting picture, and the correct limit L+m provide 
a strong evidence for the validity of the conjectured expressions. 

To summarize our results, let us ‘translate’ them back to P(p ) .  The first few 
expressions are 

Pdp) = ( 2 ~  - 1)’/p3 (4) 

P , ( P ) = ( 2 P - 1 ) 2 ( P 2 - P + l ) l P s  ( 5 )  

( 6 )  

P , ( p )  = (2p- 1)2(p6-3pS+9p4- 13p3+ I lp2-5p+l) /p~ .  (7) 
These functions are plotted in figure 2 where they are compared with the expression 
( I ) .  More generally, we found that 

P2( p) = (2p - 1)2(  p4- 2p3+4p2- 3p + l)/p7 

where the polynomials S,(p) satisfy the recursion relation (found by inspection) 

sLI ,=p2sL+( l  -p)2L+’ with & = I .  (9) 
The solution of this recursion finally yields 

2 L t l  
PL(P)=+(p) 2p-1 1 -P ] 

P 
This result shows an interesting crossover from the bulk behaviour given by the 

front factor to the surface behaviour with the additional factor suppressing the probabil- 
ity for cluster to spread to infinity. Near pc  this suppression is the most pronounced, 
with the change in the exponent form the bulk power, 1, io the surface value, 2. Let 
us denote 

f = 2p - 1 .  ( 1 1 )  

Then the bulk term in (10) is proportional to t (for small t). However, the L-dependent 
factor is also proportional io f for any fixed value L < CO. 
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Figure 2. The full lines depict the percolation probabilities PL(p)  for L=O. I, 2, 3. The 
broken line gives the L = m  ‘bulk‘ result, equation ( I ) .  
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More generally, let us consider the ‘scaling limit’ of 1-small, L-large. We have 

This expression illustrates the crossover scaling: for t~ 1,  L >> 1,  one can still have the 
regime of behaviour away from the wall when L>>1/(41) (and PL=41), and the 
wall-dominated regime L<< 1/(41) (and PL= 16L1’). 

Finally, let us comment on some qualitative aspects of directed percolation (compact 
and non-compact) above the threshold, suggested by our results. In the absence of the 
wall the connectivity spreads from the initial seed along the infinite cluster which 
becomes narrow ( vII > oL) as p -P p b  and which is mainly confined to the vicinity of 
the vertical (time) axis passing through the initial seed. Most of the paths of connectivity 
from the initial seed will cross this axis many times. In the presence of the wall the 
available paths are limited. The effect is drastic enough to change (actually, double in 
the present, compact-cluster case) the exponent value for the percolation probability. 
To our knowledge, the morphology of the infinite percolation cluster, as affected by 
the wall, has not been investigated thus far. 

The authors acknowledge helpful collaboration and discussions with H Chat6 and 
L S Schulman. One of the authors (RB) enjoyed the hospitality of the Statistical Physics 
group at Clarkson University. 
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